Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
STAR Protoc ; 3(4): 101699, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2004616

RESUMEN

The quality of an antigen-specific CD8+ T cell repertoire is crucial for the clearance of intracellular pathogens, in particular for viral infections. Here, we describe killing assays to determine the function of CD8+ T cells engineered with SARS-CoV-2-specific T cell receptors in a near-physiological system for antigen presentation. We detail the use of target cells either infected with replicating SARS-CoV-2 virus or engineered with SARS-CoV-2 open reading frames. For complete details on the use and execution of this protocol, please refer to Moosmann et al. (2022) and Wagner et al. (2022).

2.
EMBO J ; 41(17): e111608, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1934722

RESUMEN

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Inflamación/tratamiento farmacológico , Metiltransferasas/metabolismo , Ratones , Caperuzas de ARN/metabolismo , ARN Viral/genética , Ribosa , Proteínas no Estructurales Virales/genética
3.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1836040

RESUMEN

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Humanos , Pulmón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
4.
Nucleic Acids Res ; 50(1): 333-349, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1591186

RESUMEN

A promising approach to tackle the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. So far it is unclear, which viral replication steps can be efficiently inhibited with siRNAs. Here, we report that siRNAs can target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, and thereby terminate replication before start of transcription and prevent virus-induced cell death. Coronaviruses replicate via negative sense RNA intermediates using a unique discontinuous transcription process. As a result, each viral RNA contains identical sequences at the 5' and 3' end. Surprisingly, siRNAs were not active against intermediate negative sense transcripts. Targeting common sequences shared by all viral transcripts allowed simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. The most effective suppression of viral replication and spread, however, was achieved by siRNAs that targeted open reading frame 1 (ORF1) which only exists in gRNA. In contrast, siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs leading to an impaired antiviral efficacy. Verifying the translational relevance of these findings, we show that a chemically modified siRNA that targets a highly conserved region of ORF1, inhibited SARS-CoV-2 replication ex vivo in explants of the human lung. Our work encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with specifically targeting gRNA, might be key for high antiviral efficacy.


Asunto(s)
COVID-19/virología , Pulmón/virología , ARN Interferente Pequeño , ARN Viral , SARS-CoV-2/genética , Replicación Viral , Regiones no Traducidas 3' , Animales , Antivirales/farmacología , Supervivencia Celular , Bases de Datos Genéticas , Células HEK293 , Humanos , Conformación de Ácido Nucleico , Oligonucleótidos , Sistemas de Lectura Abierta , ARN Interferente Pequeño/metabolismo , Tratamiento Farmacológico de COVID-19
5.
Cell Rep ; 38(2): 110214, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1588141

RESUMEN

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Adulto , Células Cultivadas , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Epítopos Inmunodominantes/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T Citotóxicos/inmunología
6.
Antiviral Res ; 196: 105197, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1509565

RESUMEN

SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales/síntesis química , Tratamiento Farmacológico de COVID-19 , Inmunoglobulina G , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Humanos , Unión Proteica , SARS-CoV-2/efectos de los fármacos
7.
FASEB J ; 35(6): e21651, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1388031

RESUMEN

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Asunto(s)
Acetilcisteína/análogos & derivados , Amidas/farmacología , Ácido Ascórbico/farmacología , Auranofina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Disulfuros/metabolismo , Ésteres/farmacología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Sulfhidrilo/farmacología , Internalización del Virus/efectos de los fármacos , Acetilcisteína/farmacología , COVID-19/metabolismo , COVID-19/patología , Células HEK293 , Humanos
8.
Nature ; 594(7862): 246-252, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1180252

RESUMEN

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Proteómica , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , COVID-19/inmunología , COVID-19/virología , Línea Celular , Conjuntos de Datos como Asunto , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fosforilación , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteoma/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Viroporinas/metabolismo
9.
Mol Cell Proteomics ; 19(9): 1503-1522, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-616588

RESUMEN

As the COVID-19 pandemic continues to spread, thousands of scientists around the globe have changed research direction to understand better how the virus works and to find out how it may be tackled. The number of manuscripts on preprint servers is soaring and peer-reviewed publications using MS-based proteomics are beginning to emerge. To facilitate proteomic research on SARS-CoV-2, the virus that causes COVID-19, this report presents deep-scale proteomes (10,000 proteins; >130,000 peptides) of common cell line models, notably Vero E6, Calu-3, Caco-2, and ACE2-A549 that characterize their protein expression profiles including viral entry factors such as ACE2 or TMPRSS2. Using the 9 kDa protein SRP9 and the breast cancer oncogene BRCA1 as examples, we show how the proteome expression data can be used to refine the annotation of protein-coding regions of the African green monkey and the Vero cell line genomes. Monitoring changes of the proteome on viral infection revealed widespread expression changes including transcriptional regulators, protease inhibitors, and proteins involved in innate immunity. Based on a library of 98 stable-isotope labeled synthetic peptides representing 11 SARS-CoV-2 proteins, we developed PRM (parallel reaction monitoring) assays for nano-flow and micro-flow LC-MS/MS. We assessed the merits of these PRM assays using supernatants of virus-infected Vero E6 cells and challenged the assays by analyzing two diagnostic cohorts of 24 (+30) SARS-CoV-2 positive and 28 (+9) negative cases. In light of the results obtained and including recent publications or manuscripts on preprint servers, we critically discuss the merits of MS-based proteomics for SARS-CoV-2 research and testing.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/genética , Interacciones Huésped-Patógeno/genética , Neumonía Viral/genética , Proteómica/métodos , Proteínas Virales/genética , Células A549 , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Células CACO-2 , Estudios de Casos y Controles , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Indicadores y Reactivos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Proteómica/instrumentación , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Transducción de Señal , Células Vero , Proteínas Virales/clasificación , Proteínas Virales/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA